

Grade Awarded	Mark Required		\% candidates achieving grade
	$(/ 125)$	$\%$	
A	$86+$	68.8%	32.2%
B	$73+$	58.4%	25.0%
C	$61+$	48.8%	21.1%
D	$55+$	44.0%	7.9%
No award	<55	$<44.0 \%$	15.9%

Section:	Multiple Choice	Extended Answer		Investigation	
Average Mark:	25.7	140	34.4	160	15.7

2011 AdV			Chemistry Marking Scheme				
$M C$ Qu	Answer	\％Pupils Correct	Reasoning				
1			Group 3 elements have the lowest $3^{\text {rd }}$ ionisation energy as removing the $3^{\text {rd }}$ electron creates a full outer shell．Group 3 elements have the highest $4^{\text {th }}$ ionisation energy as removing $4^{\text {th }}$ electron breaks a full outer shell．				
2			XA absorbance increases as concentration increases． $\checkmark B$ the lower the concentration，the lower the absorbance of radiation $\boxtimes C$ the radiation wavelength is chosen externally \＆not dependent on concentration XD the radiation wavelength is chosen externally \＆not dependent on concentration				
3			VA Chlorine has 3 non－bonding lone pairs of electrons凹B Oxygen has 2 non－bonding lone pairs of electrons区C Nitrogen has 1 non－bonding lone pairs of electrons खD Oxygen has 2 non－bonding lone pairs of electrons				
4		66					
5			Ratio of $X: Y=133: 220=1: 1.65 \therefore$ Ratio closer to $1: 2$ of NaCl than 1：1 of CsCl NaCl has 6：6 co－ordination where each Na^{+}ion is surrounded by $6 \mathrm{Cl}^{-}$ions $\therefore \mathrm{XY}$ will also have $6: 6$ co－ordination like NaCl				
0			XA carbon is in group 4 but p－type semiconductors are doped with a group 3 element खB arsenic is in group 5 but p－type semiconductors are doped with a group 3 element $\boxtimes C$ aluminium is in group 3 and p－type semiconductors are doped with a group 3 element XD phosphorus is in group 5 but p－type semiconductors are doped with a group 3 element				
7			$\square \mathrm{A} \mathrm{Li} 2 \mathrm{O}$ dissolves in water to make an alkali and would not lower the pH of NaOH solution．区 SiO_{2} is insoluble in water $\mathrm{Li}_{2} \mathrm{O}$ and would not lower the pH of NaOH solution区 $\mathrm{P}_{4} \mathrm{O}_{10}$ dissolves in water to form an acid and would lower the pH of NaOH solution． $\boxtimes \mathrm{D} \mathrm{Al}_{2} \mathrm{O}_{3}$ is amphoteric and lowers the pH of NaOH by reacting with the NaOH				
8			खA PCl ${ }_{5}$ hydrolyses in water： $\mathrm{PCl}_{5(\mathrm{~s})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \longrightarrow \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{qq})+5 \mathrm{HCl}_{(\mathrm{g})}$ 凹B SiCl_{4} hydrolyses in water to form HCl gas 区C AICl ${ }_{3}$ hydrolyses in water to form HCl gas $\checkmark \mathrm{D} \mathrm{MgCl} 2$ dissolves in water to form $\mathrm{MgCl}_{2(a q)}$ and HCl gas is not formed				
9	$C 77$		Test	sodium oxide	calcium oxide	sodium hydride	calcium hydride
			Flame Colour	orange－yellow colour	orange－red colour	orange－yellow colour	orange－red colour
			Addition of Water	Dissolves to form alkaline solution	Reacts to form hydrogen gas and leaves alkaline solution	Dissolves to form alkaline solution	Reacts to form hydrogen gas and leaves alkaline solution
10			ख $\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$ contains Ti^{3+} ions and has an incomplete 3 d shell \therefore ion has colour 区 $\mathrm{BCr}\left(\mathrm{NH}_{3}\right)_{6}{ }^{3+}$ contains Cr^{3+} ions and has an incomplete 3 d shell \therefore ion has colour 区 $\mathrm{Ci}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$ contains Ni^{2+} ions and has an incomplete 3 d shell \therefore ion has colour $\nabla \mathrm{D} \mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}$ contains Zn^{2+} ions and has an complete 3 d shell \therefore ion has no colour				
11			no．of $\mathrm{mol} \mathrm{NO}_{3}^{-}=$volume \timesconcentration $=0.5$ litre $\times 0.1 \mathrm{~mol} \mathrm{l}^{-1}=0.05 \mathrm{~mol} \mathrm{NO}_{3}^{-}$ions But $2 \mathrm{NO}_{3}{ }^{-}$ions per $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ f．u．$\therefore 0.05 \mathrm{~mol} \mathrm{NO}_{3}{ }^{-}$ions $\rightarrow 0.025 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ f．u．				

33	D	89	© A Primary Amine has N－H bond \therefore hydrogen bonding between molecules ®B Secondary Amine has N－H bonds \therefore hydrogen bonding between molecules खC Primary Amine has N－H bond \therefore hydrogen bonding between molecules D Tertiary Amine has no N－H bonds \therefore no hydrogen bonding between molecules
34	B	41	खA 1 volume of HCl would react with the $\mathrm{N}-\mathrm{H}$ group of $\mathrm{CH}_{3} \mathrm{NHCH}_{3}$ VB 2 volumes of HCl would react with both NH_{2} groups of $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$ $\boxtimes C$ glycerol does not react with hydrochloric acid 区D 1 volume of HCl would react with the NH_{2} group of $\mathrm{HO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NH}_{2}$
35	D	72	Q A nucleophiles are not attracted to the delocalised electrons of benzene खB nucleophiles are not attracted to the delocalised electrons of benzene ख C there are no $C=C$ double bonds in benzene for addition reaction to take place ∇ D electrophiles are attracted to delocalised electrons and a substitution reaction takes place as an H atoms substitutes with a Cl atom．
36	B	51	Nitronium ion formed by： $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{HSO}_{4}^{-}$ nitronium
37	C	64	XA This molecule is trans－1，2－dibromopropene 囚 T This molecule is 1,3 －dibromopropene so cannot be a geometric isomer \subset C Molecule is cis－1，2－dibromopropene खD This molecule is 1,3 －dibromopropene so cannot be a geometric isomer
38	A	74	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ has mass $=44$ amu but molecule has mass of $88 \mathrm{amu} \therefore$ formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ －Ethanal $\mathrm{CH}_{3} \mathrm{CHO}$ has a molecular formula of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ खB Butanoic acid $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}$ has a molecular formula of $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ 囚C Ethylethanoate $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCOCH}_{3}$ has a molecular formula of $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ 区D Methylpropanoate $\mathrm{CH}_{3} \mathrm{OCOC}_{2} \mathrm{H}_{5}$ has a molecular formula of $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
39	D	35	XA X－ray radiation is used during x－ray crystallography 囚B Visible light is not used in proton nmr spectroscopy 区C Infra－red radiation absorbed as specific bonds vibrate during IR spectroscopy VD Radio waves are absorbed in proton nmr spectroscopy
40	D	27	囚A 3 peaks caused by $-\mathrm{CH}_{3},-\mathrm{CH}_{2}$ and $\mathrm{C}-\mathrm{CO}-\mathrm{C}$ 冈 B 3 peaks caused by $-\mathrm{CH}_{3},-\mathrm{CH}_{2}$ and -CHO ®C 2－methylpropan－2－ol has a formula of $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ ． VD 2 peaks caused by $\mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}$ and $\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}$

14a	2-hydroxypropanoicacid	2-hydroxypropanoic acid
		-OH group on Carbon 2carbons on main chain functional group on C_{1}
14b	carbon number 2 as 4 different groups attached to carbon 2	
$14 ¢$ (i)	Named Cyanide compound e.g. $\mathrm{KCN}, \mathrm{NaCN}, \mathrm{HCN}$	A cyanide compound that contains the $C N$ ion will perform this reac
14c(i)	Hydrolysis or acid hydrolysis	
14C(iii)	H OHH l I H $\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{N}^{\prime}$ 1 1 1 H H H	

