

2011 Marking Scheme

Grade	Mark Required		° condidator achieving anada	
Awarded	(/ ₁₂₅)	%	% candidates achieving grade	
A	86+	68.8%	32.2%	
В	73+	58.4%	25.0%	
С	61+	48.8%	21.1%	
D	55+	44.0%	7.9%	
No award	<55	< 44.0%	15.9%	

Section:	Multiple Choice		Extended	Answer	Investigat	rion
Average Mark:	25.7	/40	34.4	/60	15.7	/25

20)11 A	\dv	Higher Chemistry Marking Scheme					
MC Qu	Answer	% Pupils Correct	Reasoning					
1	A	86	Group 3 elements have the lowest 3 rd ionisation energy as removing the 3 rd electron creates a full outer shell. Group 3 elements have the highest 4 th ionisation energy as removing 4 th electron breaks a full outer shell.					
2	В	81	 A absorbance increases as concentration increases. B the lower the concentration, the lower the absorbance of radiation C the radiation wavelength is chosen externally & not dependent on concentration D the radiation wavelength is chosen externally & not dependent on concentration 					
3	A	77	☑A Chlorine has 3 non-bonding lone pairs of electrons ☑B Oxygen has 2 non-bonding lone pairs of electrons ☑C Nitrogen has 1 non-bonding lone pairs of electrons ☑D Oxygen has 2 non-bonding lone pairs of electrons					
4	С	66	$PF_{5} \qquad PF_{3}$ $F \longrightarrow F \qquad $					
5	С	67	Ratio of X:Y = 133:220 = 1:1.65 ∴ Ratio closer to 1:2 of NaCl than 1:1 of CsCl NaCl has 6:6 co-ordination where each Na ⁺ ion is surrounded by 6 Cl ⁻ ions ∴ XY will also have 6:6 co-ordination like NaCl					
6	С	75	 A carbon is in group 4 but p-type semiconductors are doped with a group 3 element B arsenic is in group 5 but p-type semiconductors are doped with a group 3 element C aluminium is in group 3 and p-type semiconductors are doped with a group 3 element D phosphorus is in group 5 but p-type semiconductors are doped with a group 3 element 					
7	A	56	 A Li₂O dissolves in water to make an alkali and would not lower the pH of NaOH solution. B SiO₂ is insoluble in water Li₂O and would not lower the pH of NaOH solution C P₄O₁₀ dissolves in water to form an acid and would lower the pH of NaOH solution. D Al₂O₃ is amphoteric and lowers the pH of NaOH by reacting with the NaOH 					
8	D	56	 ☑ A PCl₅ hydrolyses in water: PCl_{5(s)} + 4H₂O(1) → H₃PO_{4(aq)} + 5HCl_(g) ☑ B SiCl₄ hydrolyses in water to form HCl gas ☑ C AlCl₃ hydrolyses in water to form HCl gas ☑ D MgCl₂ dissolves in water to form MgCl_{2(aq)} and HCl gas is not formed. 					
9	С	77	Test sodium oxide calcium oxide sodium hydride calcium hydride Flame Colour orange-yellow colour orange-red colour orange-yellow colour orange-red colour Addition of Water Dissolves to form alkaline solution Reacts to form hydrogen gas and leaves alkaline solution Dissolves to form alkaline solution Reacts to form hydrogen gas and leaves alkaline solution Dissolves to form hydrogen gas and leaves alkaline solution					
10	D	52	 ▲ Ti(H₂O)₆³⁺ contains Ti³⁺ ions and has an incomplete 3d shell ∴ ion has colour ▲ Cr(NH₃)₆³⁺ contains Cr³⁺ ions and has an incomplete 3d shell ∴ ion has colour ▲ C Ni(H₂O)₆²⁺ contains Ni²⁺ ions and has an incomplete 3d shell ∴ ion has colour ▲ D Zn(NH₃)₄²⁺ contains Zn²⁺ ions and has an complete 3d shell ∴ ion has no colour 					
11	В	47	n o. of mol NO ₃ ⁻ = v olume × c oncentration = 0.5 litre × 0.1 mol l ⁻¹ = 0.05mol NO ₃ ⁻ ions But 2 NO ₃ ⁻ ions per Ca(NO ₃) ₂ f.u. \therefore 0.05mol NO ₃ ⁻ ions \rightarrow 0.025mol Ca(NO ₃) ₂ f.u. v olume = $\frac{\text{no of mol}}{\text{concentration}} = \frac{0.025 \text{ mol}}{0.25 \text{ mol} \text{ l}^{-1}} = 0.1 \text{ litres} = 100 \text{ cm}^3$					

12C85Be contermic recent number sequilibrium1 character by concentration12C85Be contermic reverse reaction is favoured increases by concentration13A75k: $[Ch+1](K+0]$ $[Ch] = \frac{K}{K(CO)} [K+1]^2 = \frac{3.9 \times 0.500 \times (0.1)^2}{0.040} = 0.04875 mol 1^4$ 14C88Be note indice dissolves in cyclohexane layer but partition coefficient is unlitered14C88Be note indice dissolves in cyclohexane layer but partition coefficient is unlitered15C448Assemption16D74Assemption17B59Status and the same respective differently in each layer16D74Assemption17B59Status and the same respective differently in calm. The layer set set of the molecular base set of the mole			1							
12C83EC Pressure-increasing forward reaction favoured :: increases Hs concentration IRD on change the position of equilibrium on change to Hz concentration13A75Ks [CHU}(Ho] [CHu] = (K+CO) (He)?] = 39 × 0500 (CO)? = 0.04875 mol 1²14C88Biome cidence dissolves in each layer to the same proportion14C88Biome cidence dissolves in each layer to the same proportion15C488Biome cidence dissolves in each layer to the same proportion coefficient is unaltered EC solubility of iodine changes with temperature differently in each layer Bio Thorough mixing does not alter the partition coefficient or the concentrations to additionation of the information of the inform	12 (85	·						
Image: Constraint of the constr		C								
13A75 $k = \frac{[CH_3]k[H_2]}{[CM_2]k[H_2]}$ $(CH_4] = \frac{k \times [CO] \times [H_2]^3}{[H_2O]} = \frac{3.9 \times 0.500 \times (01)^3}{0.040} = 0.04875 mol 1^4$ 14C88Borner iodine dissolves in each layer to the same proportion14C88Borner iodine dissolves in exclohance layer but partition coefficient is unaltered15C48Entropy in twing does not other the partition coefficient or the concentrations15C48Entropy in twing does not other the partition coefficient is unaltered16D74NH3(co) + NH3(co) mode the term partition coefficient is the column. The sale part is associate two the column is the sale operities in the context two the column is the sale operities in the context two the column. The sale part is associate the sale context the sal				-						
14 C 88 EA iodine dissolves in each layer to the same proportion 14 C 88 EA iodine dissolves in cyclohexane layer but partition coefficient is unaltered 15 C 48 Earlies of iodine changes with temperature differently in each layer 15 C 48 Earlies of iodine changes with temperature differently in each layer 16 D 744 Interpret in the indication of the content of the content in the indication of the content indithe content indithe conte				\mathbb{E} D no change the position of equilibrium \therefore no change to H ₂ concentration						
14 C 88 EA iodine dissolves in each layer to the same proportion 14 C 88 EA iodine dissolves in cyclohexane layer but partition coefficient is unaltered 15 C 48 Earlies of iodine changes with temperature differently in each layer 15 C 48 Earlies of iodine changes with temperature differently in each layer 16 D 744 Interpret in the indication of the content of the content in the indication of the content indithe content indithe conte	13	Δ	75	$K = \frac{[CH_4] \times [H_2O]}{[CH_4] \times [CH_4]} = \frac{K \times [CO] \times [H_2]^3}{[CH_4] \times [CO] \times [H_2]^3} = \frac{3.9 \times 0.500 \times (0.1)^3}{(0.1)^3} = 0.04875 \text{ mol } 1^{-1}$						
14C88Bit more iodine dissolves in cyclohexane layer but partition coefficient is unaltered Eff solubility of iodine changes with temperature differently in each layer BD Thorough mixing does not alter the partition coefficient or the concentrations15C48 Proceed mixing does not alter the partition in the temperature differently in each layer 	15	N	15							
14 C 85 Effectivity of iodime changes with temperature differently in each layer 15 C 48 Finase Exploring 15 C 48 Finase Exploring Exploring 16 D 744 Endotion The selic particles in the column accuted in non-point liquid multiple column. The larger the subtrace through the column accuted in non-point liquid multiple column. The larger the subtrace through the column accuted in the subtrace through the column accuted in the subtrace through the column accuted in the subtrace through the column accute the subtrace through the column accute the larger the subtrace through the column accute the subtrace the subtrace through the column accute the subtrace through the column accute the subtrace the subtrace the subtrace through the column accute the subtrace through the column accute the subtrace through the column accute the subtrace the subtrace the subtrace the subtrace through the column accute the subtrace through the column accute the subtrace the subtrace through the column accute the subtrace										
InterpretationEarly mixing does not alter the partition coefficient or the concentrations15C48Image: Statistic of the statistic of the composition of the concentrations16D74Image: Statistic of the statistic of the composition of the concentration of the	14	C	88	· · ·						
15C488Process Answer Stationary Stationary MobileAnswer Stationary Institute particles The silics particles in the column or conduct in more polar liquid and the non-polar liquid interacts with fits test substance treageling through the column. The longer the statistics through the column. The longer the statistics through the column or conduct the column or conduct the column or conduct the column of the column or the longer the substance treageling the column of the column or through the column. The longer the statistics through the column or through the column or conduct the column of through the column or the longer the substance treageling the column of the column or the longer the substance treageling the column of the column or the longer the substance to a carried through the column or the longer the substance to a carried through the column or the longer the substance to a carried through the column or the longer the substance to a carried through the column or the longer the substance to a carried through the column or the longer the substance to a carried through the column or the longer the substance to a carried through the column or the longer the substance to a carried through the column or the longer the substance to a carried the column or the substance through the column or the substance to a carried the column or t	- •									
15C48StationNon-poler liquid liquid interacts with the calculation travel ingular of the non-poler liquid interacts with the calculation travel ingular of the non-poler liquid interacts with the calculation travel in a deduce traveling through the column. The mobile phase is a gas which carries the additioned travely the column. The mobile phase is a gas which carries the additioned travely the column. The mobile phase is a gas which carries the use correct through the column. The mobile phase is a gas which carries the additioned travely the mobile phase.16D744NH ₂ (aq)Image: Station of the column. The mobile phase is a gas which carries the use correct through the column. The mobile phase is a gas which carries the use of the mobile phase.16D744NH ₂ (aq)Image: Station of the column. The mobile phase is a gas which carries the use of the theory the mobile phase.17B599Equation 1: Ha + 12 - 2HI has an activation energy of 179kJImage: Station of the column. The phase is a gas which carries the column. The phase is a gas which carries the column. The column of the column of the column of the column. The column of the column of the column of the column of the column. The column of the col										
15C4810Image interacts with the task address through the column. The longer thread the column The longer thread the longer thread the column The longer thread the longer thread the column The longer thread thread thread the longer thread the longer thread thread the longer thread t		_		The silica particles in the column are coated in non-polar liquid and the non-polar						
$\begin{array}{ c c c c c } \hline \begin{array}{ c c c c } \hline \begin{array}{ c c c } \hline \end{array} \\ \hline \begin{array}{ c c c } \hline \end{array} \\ \hline \begin{array}{ c c c } \hline \end{array} \\ \hline \begin{array}{ c c c } \hline \end{array} \\ \hline \begin{array}{ c c c } \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{ c c c } \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{ c c c } \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{ c c c } \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{ c c c } \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{ c c c } \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{ c c c } \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{ c c c } \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{ c c c } \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{ c c c } \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{ c c c } \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{ c c c } \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{ c c c } \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{ c c c } \hline \end{array} \\ \hline \begin{array}{ c c c } \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{ c c c } \hline \end{array} \\ \hline \begin{array}{ c c c } \hline \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \end{array} \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \end{array} \\ \end{array} \end{array} \\ \hline \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \end{array} \end{array} \end{array}$	15	C	48	liquid interacts with the test substance travelling through the column.						
16D74NH3(a) acid acid base base base conjugate acid base conjugate acid toward recursor?NH4(a) conjugate base conjugate base (toward recursor)NH4(a) conjugate base (toward recursor)NH4(a) toward recursor)NH4(a) toward recursor)NH4(a) toward recursor)NH4(a) toward recursor)NH4(a) toward recursor)NH4(a) toward recursor)NH4(a) toward recursor)NH4(a) toward recursor) <th>_</th> <th>•</th> <th></th> <td>Mobile Helium the test substance spends interacting with the stationary phase, the longer the</td>	_	•		Mobile Helium the test substance spends interacting with the stationary phase, the longer the						
16D744acid (unwatch)base (unwatch)conjugate table (unwatch)conjugate table (unwatch)conj										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16		74							
17B59Equation 2: 2HI \rightarrow H ₂ + I ₂ has an activation energy of 179kJ17B5917B5917B5917B5917B5917B5917B5917B5918B6919A Reaction must be endothermic for equation 2 as more energy of 179kJ .: Reaction must be endothermic for equation 2 as more energy is required to get to activated complex at the top of the hill than is released as H ₂ and E to activated complex at the top of the hill than is released as H ₂ and E required to get to activated complex at the top of the hill than is released as H ₂ and E (C Reactants must be elements in their natural state (Strontium is a solid at 25°C)18B6919A5219A5219A5219A5219A5220D7621B4222A3922A39232424A25C Romine is a liquid at 25°C not a solid21B4222A39232424A2525263927272828292920D202720D20D21B4224 </th <th></th> <th>U</th> <th>/ /</th> <th>(donates H') (accepts H') (formed on accepting H') (formed after losing H')</th>		U	/ /	(donates H') (accepts H') (formed on accepting H') (formed after losing H')						
17B59:: Reaction must be endothermic for reaction 2 as more energy is required to get to activated complex at the top of the hill than is release as H ₂ and I ₂ are reformed. :: $\Delta H = 179KJ = 165KJ = 144K mol-1$ 17B59Equation 2: $2HI = -42 + 12$ has an activation energy of 179kJ :: Reaction must be endothermic for equation 2 as more energy is required to get to activated complex at the top of the hill than is released as H ₂ and I ₂ are reformed. :: $\Delta H = 179kJ = 165KJ = +14kJ mol-1$ 18B69EA Reactants must be elements in their natural state (Strontium is a solid at 25°C) IM Enthalpy of formation: Imol of substance formed from its elements in their natural state EC Reactants must be elements in their natural state (Strontium must be element not ion) ED Reactants must be elements in their natural state (Strontium must be element not ion) ED Reactants must be elements in their natural state (Strontium must be element not ion) ED Reactants must be elements in their natural state (Strontium must be element not ion) ED Reactants must be elements in their natural state (Strontium must be element not ion) ED Reactants must be elements in their natural state (Strontium must be element not ion) ED Reactants must be elements in their natural state (Strontium must be element not ion)19A522Step $\frac{1}{H(Q) + \frac{1}{Q(Q)} - \frac{1}{Q(Q)} - \frac{1}{248kJ}}$ $\frac{1}{\sqrt{Q(Q) + \frac{1}{Q(Q)} - \frac{1}{248kJ}}$ $\frac{1}{\sqrt{Q(Q) + \frac{1}{Q(Q)} - \frac{1}{248kJ}}}$ 20D76EA CI-Cl bond is neither formed nor broken in this reaction \mathbb{Z} C.H.H bond is broken (positive value) and H-Cl bond is formed (negative value) \mathbb{Z} C.H.H bond is broken (positive value for H-Cl would be negative (exothermic)21B422Enthalpy Cale										
17B50activated complex at the top of the hill than is release as H2 and I2 are reformed. $\therefore AH = 179kJ - 165kJ = +14kJ mol^{-1}$ 17B59Equation 1: H2 + I2 - 2HI has an activation energy of 165kJ Equation 2: 2HI \rightarrow H2 + I2 has an activation energy of 179kJ \therefore Reaction must be endothermic for equation 2 as more energy is required to get to activated complex at the top of the hill than is released as H2 and I2 are reformed. $\therefore AH = 179kJ - 165kJ = +14kJ mol^{-1}$ 18B69EA Reactants must be elements in their natural state (Strontium is a solid at 25°C) IB Enthalpy of formation: Inol of substance formed from its elements in their natural state $B = \frac{160}{10}$ Eact ant must be elements in their natural state (Strontium must be element not ion) $BD Reactants must be elements in their natural state (Strontium must be element not ion) BD Reactants must be elements in their natural state (Strontium must be element not ion) BD Reactants must be elements in their natural state (Strontium must be element not ion) BD Reactants must be elements in their natural state (Strontium must be element not ion) BD Reactants must be elements in their natural state (Strontium must be element not ion) BD Reactants must be elements in their natural state (Strontium must be element not ion) BD Reactants must be elements in their natural state (Strontium must be element not ion) BD Reactants must be elements in their natural state (Strontium must be element not ion) BD Reactants must be elements in their natural state (Strontium must be element not ion) BD Reactants must be elements in their natural state (Strontium must be element not ion) BD Reactants must be elements in their natural state (Strontium must be element not ion) BD Reactants must be element for mits element in this reaction$	17	D	50							
$\frac{1}{17} \begin{array}{ c c } B \begin{array}{ c c } & \frac{1}{179 \text{ kJ}} - 165 \text{ kJ} = +14 \text{ kJ} \text{ mol}^{-1} \\ \hline \\ $	1/	D	52							
17B59Equation 2: $2HI \rightarrow H_2 + I_2$ has an activation energy of $179kJ$. Reaction must be endothermic for equation 2 as more energy is required to get to activated complex at the top of the hill than is released as H_2 and I_2 are reformed. $\therefore \Delta H = 179kJ - 165kJ = +14kJ mol-118B699EA Reactants must be elements in their natural state (Strontium is a solid at 25°C)EA Reactants must be elements in their natural state (Strontium must be element not ion)Replex to formation: Imol of substance formed from its elements in their natural state(SC Reactants must be elements in their natural state (Strontium must be element not ion)Replex catants must be elements in their natural state (Strontium must be element not ion)Replex catants must be elements in their natural state (Strontium must be element not ion)19A522EA CI-Cl bond is neither formed nor broken in this reactionBB CI-Cl bond is neither formed nor broken in this reactionBB CI-Cl bond is neither formed nor broken in this reactionBB CI-Cl bond is formed so value for H-Cl would be negative (exothermic)20D766EA CI-Cl bond is formed so value for H-Cl would be negative (exothermic)BD H-Cl bond is formed so value for H-Cl would be negative (exothermic)21B422EA Bronine is a liquid at 25°C not a gasBD Definition is 1 mole of gaseous atoms formed from its element in their natural stateBC Remaine is a liquid at 25°C not a gasBD Definition of Ca2Ca2(g) - 2Cl(g)ValueCa2(g) - 2Cl(g)22A399Enthalpy of solution of Ca2Ca2(g) - Ca(g)Ca2(g) - Ca(g) - C2(g) - C2(g) - C2(g)C2(g) - C2(g) - C2(g) - C2(g) - C2(g) - C2(g) - C2(g) - C2(G2) - C2(G2) - C2(G2) - $										
17B59:: Reaction must be endothermic for equation 2 as more energy is required to get to activated complex at the top of the hill than is released as Hz and Iz are reformed. .: $AH = 179 kJ - 165 kJ = +14 kJ mol^{-1}$ 18B69Image: A Reactants must be elements in their natural state (Strontium is a solid at 25°C) ID Enthalpy of formation: Imol of substance formed from its elements in their natural state ID Reactants must be elements in their natural state (Strontium must be element not ion) Image: D Reactants must be elements in their natural state (Strontium must be element not ion)19A522Image: Reaction image: Reaction				Equation 1: $H_2 + I_2 \rightarrow 2HI$ has an activation energy of 165kJ						
17B99required to get to activated complex at the top of the hill than is released as Hz and Iz are reformed. $\therefore \Delta H = 179 kJ - 165 kJ = +14 kJ mol^{-1}$ 18B69EA Reactants must be elements in their natural state (Strontium is a solid at 25°C) EC Reactants must be elements in their natural state (Strontium must be element not ion) ED Reactants must be elements in their natural state (Strontium must be element not ion) ED Reactants must be elements in their natural state (Strontium must be element not ion) ED Reactants must be elements in their natural state (Strontium must be element not ion) ED Reactants must be elements in their natural state (Strontium must be element not ion) ED Reactants must be elements in their natural state (Strontium must be element not ion) ED Reactants must be elements in their natural state (Strontium must be element not ion) ED Reactants must be elements in their natural state (Strontium must be element not ion) ED Reactants must be elements in their natural state (Strontium must be element not ion) ED Reactants must be elements in their natural state (Strontium must be element not ion)19A5220D76EA CI-Cl bond is neither formed nor broken in this reaction EB CI-Cl bond is neither formed nor broken in this reaction EB CI-Cl bond is formed so value for H-Cl would be negative (exothermic) ED H-Cl bond is formed so value for H-Cl would be negative (exothermic)21B422EA Romine is a liquid at 25°C not a solid EB I mole of gaseous atoms formed from its element in their natural state EC Romine is a liquid at 25°C not a gas ED Definition is 1 mole of gaseous atoms produced not 1 mole of substance split up.22A39Enthalpy Gal2 e Hydration of Ca ² Ca ² Ca ² (
18B69SAH = 179kJ - 165kJ = +14kJ mol ⁻¹ 18B69SAR eactants must be elements in their natural state (Strontium is a solid at 25°C) SC Benthalpy of formation: Imol of substance formed from its elements in their natural state SC Reactants must be elements in their natural state (Strontium must be element not ion) SC Reactants must be elements in their natural state (Strontium must be element not ion) SC Reactants must be elements in their natural state (Strontium must be element not ion) SC Reactants must be elements in their natural state (Strontium must be element not ion)19A5220D76SC Reactant Sust be reference in their formed nor broken in this reaction SC Reactants in their formed nor broken in this reaction SC Reactants in their formed nor broken in this reaction SC RC H-H bond is neither formed nor broken in this reaction SC H-H bond is formed so value for H-Cl bond is formed (negative value) SD H-Cl bond is formed so value for H-Cl would be negative (exothermic)21B4222A3924A25°C not a gas SC Bornine is a liquid at 25°C not a gas SC Bornine is a liquid at 25°C not a gas SC Bornine is a liquid at 25°C not a gas SC Bornine is a liquid at 25°C not a gas SC Bornine is a liquid at 25°C not a gas SC Bornine is a liquid at 25°C not a gas SC BO Fintion is 1 mole of gaseous atoms produced not 1 mole of substance split up. Enthalpy of CaCl2 CaCl2(g) - CA	17	R	50							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1/	D	59	required to get to activated complex at the top of the nill than is						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				CATIonati - Alternational Control of Control						
18B69 \square B Enthalpy of formation: 1mol of substance formed from its elements in their natural state \square C Reactants must be elements in their natural state (Strontium must be element not ion) \blacksquare D Reactants must be elements in their natural state (Strontium must be element not ion)19A522 $\frac{Step Reaction Enthalpy \ 0 H_2(Q) \rightarrow 2H(Q) +432kJ}{0 2H(Q) \rightarrow 2H(Q) +432kJ}$ $0 H_2(Q) \rightarrow H_2(Q) -242kJJ}$ 20D76 \square A CI-CI bond is neither formed nor broken in this reaction 										
16B09 $\boxtimes C$ Reactants must be elements in their natural state (Strontium must be element not ion) $\boxtimes D$ Reactants must be elements in their natural state (Strontium must be element not ion)19A52 $\frac{5tep}{P}$ $\frac{P(2)(2) - 2H(g)}{P} + \frac{P(2)(2)}{P} - \frac{2H(g) + 432kJ}{P} + \frac{P(2)(2)}{P} +$		~	10							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18	В	69							
19 A 52 19 A 52 $B = \frac{0}{4} \frac{H_2(g) \rightarrow 2H(g)}{g - 248kJ} = \frac{4432kJ}{g}$ $B = \frac{1}{2H(g) + O(g)} \rightarrow \frac{1}{H_2O(g)} = \frac{916kJ}{H_2O(g)} \rightarrow \frac{1}{H_2O(g)} = \frac{916kJ}{H_2O(g)} \rightarrow \frac{1}{H_2O(g)} = \frac{1}{H_2O(g)} \rightarrow \frac{1}{H_2O(g)} = \frac{1}{H_2O(g)} \rightarrow \frac{1}{H_2O(g)} = \frac{1}{H_2O(g)} \rightarrow \frac{1}{H_2O(g)} = \frac{1}{H_2O(g)} \rightarrow \frac{1}{H_2O(g)} $										
19A52 $\underline{\Theta}$ $\pm 20(g) \rightarrow 0(g)$ $\pm 20(g)$ $\pm 20(g)$ $\pm 20(g)$ $\pm 20(g)$ 				Step Reaction Enthalpy						
19A5220D $\overline{52}$ 20D76 \mathbb{B} A CI-CI bond is neither formed nor broken in this reaction \mathbb{B} CI-CI bond is neither formed nor broken in this reaction \mathbb{B} CI-CI bond is neither formed nor broken in this reaction \mathbb{B} CI-CI bond is neither formed nor broken in this reaction \mathbb{B} CI-CI bond is neither formed nor broken in this reaction \mathbb{B} CI-CI bond is neither formed nor broken in this reaction \mathbb{B} CI-CI bond is neither formed nor broken in this reaction \mathbb{B} CI-CI bond is formed so value for H-CI would be negative (exothermic) \mathbb{E} A Bromine is a liquid at 25°C not a solid \mathbb{B} H-CI bond is formed from its element in their natural state \mathbb{B} C Bromine is a liquid at 25°C not a gas \mathbb{B} Definition is 1 mole of gaseous atoms produced not 1 mole of substance split up. \mathbb{B} Definition of Ca ²⁺ \mathbb{C} Ca ²⁺ (g) \rightarrow Ca(2) \mathbb{C} Hydration of Ca ²⁺ \mathbb{C} Ca ²⁺ (g) \rightarrow Ca(q) \mathbb{C} Ci(g) \rightarrow Ca(q) \mathbb{C} Hydration of Ca ²⁺ \mathbb{C} Ca ²⁺ (g) \rightarrow Ca(q) \mathbb{C} A 39										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19	Δ	52	2-297 - 37						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Π	56							
20 D $B_{add} = \frac{B}{B} = \frac{B}{A} Cl-Cl bond is neither formed nor broken in this reaction}{B Cl-Cl bond is neither formed nor broken in this reaction}{C H-H bond is broken (positive value) and H-Cl bond is formed (negative value) ED H-Cl bond is formed so value for H-Cl would be negative (exothermic)} B H-Cl bond is formed so value for H-Cl would be negative (exothermic) EA Bromine is a liquid at 25°C not a solid D B 1 mole of gaseous atoms formed from its element in their natural state C Bromine is a liquid at 25°C not a gas ED Definition is 1 mole of gaseous atoms produced not 1 mole of substance split up. Lattice enthalpy CaCl_2 Ca^{2*}(g) + 2Cl^*(g) - CaCl_2(s) - 2223kJ Hydration of Ca^{2*} Ca^{2*}(g) - CaCl_2(s) - 2223kJ Hydration of Cl^{2*} Cl^*(g) - 2Cl^*(aq) - 1650kJ Enthalpy Cl^*(aq) - 2Cl^*(aq) - 1650kJ Enthalpy of solution of CaCl_2 CaCl_2(s) - 2Cl^*(aq) - 728kJ Enthalpy of solution of CaCl_2 CaCl_2(s) - Ca(aq) + 2Cl^*(aq) - 728kJ Enthalpy CaCl_2 CaCl_2(s) - Ca(aq) + 2Cl^*(aq) - 728kJ Enthalpy CaCl_2 CaCl_2(s) - Ca(aq) + 2Cl^*(aq) - 728kJ Enthalpy CaCl_2 CaCl_2(s) - Ca(aq) + 2Cl^*(aq) - 728kJ Enthalpy CaCl_2 CaCl_2(s) - Ca(aq) + 2Cl^*(aq) - 728kJ Enthalpy CaCl_2 CaCl_2(s) - Ca(aq) + 2Cl^*(aq) - 728kJ Enthalpy CaCl_2 CaCl_2(s) - Ca(aq) + 2Cl^*(aq) - 728kJ Enthalpy CaCl_2 CaCl_2(s) - Ca(aq) + 2Cl^*(aq) - 728kJ Enthalpy CaCl_2 CaCl_2(s) - Ca(aq) + 2Cl^*(aq) - 728kJ Enthalpy CaCl_2 CaCl_2(s) - Ca(aq) + 2Cl^*(aq) - 728kJ Enthalpy CaCl_2 CaCl_2(s) - Ca(aq) + 2Cl^*(aq) - 728kJ Enthalpy CaCl_2 CaCl_2(s) - Ca(aq) + 2Cl^*(aq) - 728kJ Enthalpy CaCl_2 CaCl_2(s) - Ca(aq) + 2Cl^*(aq) - 728kJ Enthalpy CaCl_2 CaCl_2(s) - Ca(aq) + 2Cl^*(aq) - 728kJ Enthalpy CaCl_2 CaCl_2(s) - Ca(aq) + 2Cl^*(aq) - 728kJ Enthalpy CaCl_2 CaCl_2(s) - Ca(aq) + 2Cl^*(aq) - 728kJ Enthalpy CaCl_2 CaCl_2(s) - Ca(aq) + 2Cl^*(aq) - 728kJ Enthalpy CaCl_2 CaCl_2(s) - Ca(aq) + 2Cl^*(aq) - 728kJ Enthalpy CaCl_2 CaCl_2(s) - Ca(aq) + 2Cl^*(aq) - 728kJ Enthalpy CaCl_2 CaCl_2(s) - Ca(aq) + 2Cl^*(aq) - $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		~								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20	D	16							
21 B 42 A Bromine is a liquid at 25°C not a solid $\square B$ 1 mole of gaseous atoms formed from its element in their natural state $\square C$ Bromine is a liquid at 25°C not a gas $\square D$ Definition is 1 mole of gaseous atoms produced not 1 mole of substance split up. Enthalpy Equation Value $\square Lattice enthalpy CaCl_2 Ca^{2*}(g) + 2Cl^{\circ}(g) \rightarrow CaCl_2(s) -2223kJ$ $\square Hydration of Ca^{2*} Ca^{2*}(g) \rightarrow Ca(aq) -1650kJ$ $\square Hydration of Cl^{-} Cl^{\circ}(g) \rightarrow Cl^{\circ}(aq) -364kJ$ $2x^{\circ} 2Cl^{\circ}(g) \rightarrow 2Cl^{\circ}(aq) -728kJ$ Enthalpy of solution of CaCl_2 CaCl_2(s) $\rightarrow Ca(aq) + 2Cl^{\circ}(aq) = 0 + 2x^{\circ} - 0$ -1650 + (-728) - (-2223) -1650 - 728 + 2223										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21	D	12	•						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C1	D	42	-						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{ c c c c c c c c } \hline & A \end{array} \begin{array}{ c c c c c c c c c c c c c c c c c c c$										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
Enthalpy of solution of $CaCl_2$ $CaCl_2(s) \rightarrow Ca(aq) + 2Cl^{-}(aq) = 2 + 2x2 - 1650 + (-728) - (-2223) - 1650 - 728 + 2223$			4 39	• Hydration of Cl ⁻ $Cl^{-}(g) \rightarrow Cl^{-}(aq)$ -364kJ						
-1650 + (-728) - (-2223) -1650 - 728 + 2223	22	A								
-1650 - 728 + 2223										
-155kJ mol ⁻¹										
			1	-155kJ mol ⁻¹						

23	D	74	 A small decrease in entropy (disorder) as two gases react to become one gas B Increase in entropy (disorder) as gas is released during reaction C Increase in entropy (disorder) as gas is released during reaction D Larger decrease in entropy (disorder) as three reactants (one a gas) become one substance in solution. 					
24	В	61	 ☑ A Propan-1-ol boils at 97°C and is a liquid at 90°C. Liquids are more ordered than gases ☑ B Propan-2-ol boils at 82°C and is a gas at 90°C. Gases are more disordered than gases ☑ C butan-1-ol boils at 118°C and is a liquid at 90°C. Liquids are more ordered than gases ☑ D butan-2-ol boils at 100°C and is a liquid at 90°C. Liquids are more ordered than gases 					
25	D	52	 A Fluorine is more reactive than chlorine as displaces chlorine from solutions B Chlorine is more reactive than bromine as displaces bromine from solutions C Fluorine is more reactive than bromine as displaces bromine from solutions D Iodine is less reactive than Bromine and cannot displace bromine from solutions 					
26	С	82	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
27	A	67	PropertyBoiling PointViscosityEffect of increasing number• higher degree of Hydrogen bonding • molecules closer together • increase to boiling point• higher degree of Hydrogen bonding • molecules closer together • alcohol is thicker					
28	С	79	 A sigma bonds are formed by sp³ hybridisation B sp² hybridisation produced pi bonds only C alkanes have only sigma (single) bonds formed by sp³ hybridisation b sp³ hybridisation produces sigma bonds only 					
29	A	51	 ☑A There are no H[•] radicals in this mechanism ☑B two Cl[•] free radicals could collide and combine to form Cl₂. ☑C two CH₃[•] free radicals could collide to form C₂H₆. ☑D a Cl[•] free radical could collide with a CH₃[•] free radical to form CH₃Cl 					
30	С	62	Structure Number of sigma bonds Number of Pi bonds H G H Sigma Bond Number H C H Sigma Bond Number C-C 4 C-C 2 C-N 2 Total 11					
31	A	76	 A The Cl atom attaches to C2 and H atom attaches to C3 (C3 has the most H atoms on it already) B This is the minor product of Markovnikov's Rule C Only 1 chlorine is added to molecule as H-Cl is added across the C=C double bond D 4-chloro-4-methylpentane should be renumbered to 2-chloro-2-methylpentane 					
32	В	67	Propan-1-ol (primary alcohol) propyl propanoate + water (ester)					

			A Primary Amine has N-H bond hydrogen bonding between molecules
33	D	89	■B Secondary Amine has N-H bonds ∴ hydrogen bonding between molecules
	U	07	☑C Primary Amine has N-H bond ∴ hydrogen bonding between molecules
			☑D Tertiary Amine has no N-H bonds ∴ no hydrogen bonding between molecules
			■ A 1 volume of HCl would react with the N-H group of CH ₃ NHCH ₃
34	В	41	☑B 2 volumes of HCl would react with both NH₂ groups of H₂N-CH₂-NH₂
34	D	11	🗷 C glycerol does not react with hydrochloric acid
			☑D 1 volume of HCl would react with the NH₂ group of HO-C ₆ H₄-NH₂
			🗷 A nucleophiles are not attracted to the delocalised electrons of benzene
~ -	•		B nucleophiles are not attracted to the delocalised electrons of benzene
35	D	12	EC there are no C=C double bonds in benzene for addition reaction to take place
	•	•	☑D electrophiles are attracted to delocalised electrons and a substitution reaction
			takes place as an H atoms substitutes with a Cl atom.
			Nitronium ion formed by: $HNO_3 + H_2SO_4 \longrightarrow NO_2^+ + H_3O^+ + 2HSO_4^-$
			nitronium
			$^{\text{ion}} NO_2^+$
~ (- 4	conc NO ₂ NO ₂
36	В	51	$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $
			benzene nitrobenzenenium nitrobenzene intermediate ion
			A This molecule is <i>trans</i> -1,2-dibromopropene
37	C	64	B This molecule is 1,3-dibromopropene so cannot be a geometric isomer
	\checkmark	Ur	✓C Molecule is cis-1,2-dibromopropene ✓D This molecule is 1.3 dibromopropene
			D This molecule is 1,3-dibromopropene so cannot be a geometric isomer
			C_2H_4O has mass = 44amu but molecule has mass of 88amu \therefore formula $C_4H_8O_2$
20	٨	71	\square A Ethanal CH ₃ CHO has a molecular formula of C ₂ H ₄ O
38	A	/4	B Butanoic acid C_3H_7COOH has a molecular formula of $C_4H_8O_2$
			\square C Ethylethanoate C ₂ H ₅ OCOCH ₃ has a molecular formula of C ₄ H ₈ O ₂
			ED Methylpropanoate $CH_3OCOC_2H_5$ has a molecular formula of $C_4H_8O_2$
	•		A X-ray radiation is used during x-ray crystallography
39	D	35	EB Visible light is not used in proton nmr spectroscopy
			EC Infra-red radiation absorbed as specific bonds vibrate during IR spectroscopy
			D Radio waves are absorbed in proton nmr spectroscopy
		_	\mathbb{Z} A 3 peaks caused by -CH ₃ , -CH ₂ and C-CO-C
40 [D	27	■B 3 peaks caused by -CH ₃ , -CH ₂ and -CHO
			$\square C$ 2-methylpropan-2-ol has a formula of $C_4H_{10}O$.
			☑D 2 peaks caused by C-CH₂-O and C-CH₂-C

Long	Answer	ner Chemistry Marking Scheme Reasoning							
Qu				J					
1a	Superconductor						at low temperatures.		
1b	Liquid Nitrogen	temperatu become a s liquid heliu	Nitrogen has a boiling point of -210°C (63K) and liquid nitrogen will keep the temperature of the superconductor below the 85K necessary for the material to become a superconductor. There are safety considerations using liquid oxygen and liquid helium is too expensive to use economically.						
2a	Line at 4.6x10 ¹⁴ Hz	The blue/v	iolet end	of the v	isible sp	6.52×10 ⁻⁷ m = pectrum is around is around 700nr			
2b(i)	$H(g) \rightarrow H^{+}(g)$ + e ⁻	from 1 mol	of atoms	in the g	aseous :	state.	noval of 1 mol of electrons		
2b(ii)	91nm or 9.13×10 ⁻⁸ m	$E=\frac{L\timesH}{2}$	<u>1 × c</u>	λ = <u>L ×</u>	:	$= \frac{6.02 \times 10^{23} \text{mol}^{-1}}{11}$ = 9.13 × 10 ⁻⁸ m = 91.3 nm	¹ <u>× 6.63×10^{−34} J s × 3×10⁸ m s^{−1}</u> 311 × 1000 J mol ^{−1}		
3a	NO: +2	Compound NO		D atoms 1	-	e from O atoms x -2 = -2	Oxidation State of Nitrogen +2		
Ju	NO2: +4	NO ₂		2		x -2 = -4	+4		
3b	0 0 0	(∋.0.	N) •	←→	0, N, O, O		
Зс	NO2 ⁻ + H2O ↓ NO3 ⁻ + 2H ⁺ + 2e ⁻		N N	O2 ⁻ O2 ⁻ + O2 ⁻ + O2 ⁻ +	H2O H2O H2O	$\begin{array}{rrrr} & NO_3^- \\ \rightarrow & NO_3^- \\ \rightarrow & NO_3^- & + \\ \rightarrow & NO_3^- & + \end{array}$	2H⁺ 2H* + 2e⁻		
4 a(i)	1s²2s²2p ⁶ 3s²3p ⁶ 3d ⁵		pecies Fe Fe ³⁺	1s²2s	² 2p ⁶ 3	rrangement s ² 3p ⁶ 3d ⁶ 4s ² 3s ² 3p ⁶ 3d ⁵	3d orbital ↑↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑		
4a (ii)	1s²2s²2p ⁶ 3s²3p ⁶ 3d ⁴		pecies Mn Mn ³⁺	1s²2s	² 2p ⁶ 3	rrangement s²3p ⁶ 3d ⁵ 4s² 3s²3p ⁶ 3d ⁴	3d orbital ↑ ↑ ↑ ↑ ↑ ↑		
4a (iii)	Fe ³⁺ has half-filled d-subshell	Fe ³⁺ ions are 3d ⁵ which means each of the d-orbitals are half-filled. A full d-subshell is very stable and a half-filled d-subshell is more stable than an incomplete d-subshell							
4b	1.71kg	1mol TiO2 = (1	FeTi 1mo 21.4m Ti(SC 1mc 21.4m ×47.9)+(2x	no. of r D3 + 3H2 1 ol. D4)2 + 4N 01 101 16) = 47.9	nol = <u>ma</u> SO4 — NaOH — + 32 = 79	► TiO2 + 2 1mol 21.4mol .9g			

		Tetrachloridocuprate (II) = [Cu(Cl) ₄] ²⁻							
4c	(NH₄)₂[Cu(Cl)₄]	no. of choride metal negative Charge on ligands ion ligand name complex metal ion Neutral ligands include: Negative Ligands include: Central Ion: Charge: Ligand Name H ₂ O aqua NH ₃ ammine Chloride Cl ⁻ chlorido Cyanide CN ⁻ cyanido NH ₃ ammine CO carbonyl Nitrite NO ₂ ⁻ nitrito Ammonium ions need to balance negative charge of complex: (NH4 ⁺)2 [Cu(Cl ⁻)4] ²⁻							
5a	Answer to include:	Step 4: Rinse beaker with deionised water, add washings to standard flask							
5b(i)	Murexide	Step 5: add deionised water up to mark on standard flask PPA Technique Question							
5b(ii)	octahedral	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
5b(iii)	22.9%	Average titre (ignoring rough titre) = 23.55cm ³ = 0.02355 litres no. of mol Ni ²⁺ in 25 cm ³ = volume × concentration = 0.02355 × 0.110 = 0.00259 mol no. of mol Ni ²⁺ in 100cm ³ = 0.00259 × ¹⁰⁰ / ₂₅ = 0.0104mol mass of Ni = no. of mol × gfm = 0.0104 × 58.7 = 0.608g %mass of Ni ²⁺ = $\frac{0.608g}{2.656g}$ × 100 = =22.90%							
6a	300K	Reaction becomes feasible when ΔG° =0. From graph: when ΔG° =0, T=300K							
6b	(accept 300K -310K) 400 (accept 380 - 420)	y = m x + c y-axis value gradient x-axis value y-axis intercept ΔG° = $-\Delta S^{\circ}$ T + ΔH° Extrapolate the line until line intercepts the y-axis.							
6c	1325 (accept 1220 - 1400)	Gradient = -ΔS° = $\frac{y_2 - y_1}{x_2 - x_1} = \frac{-390 - 140}{600 - 200} = \frac{-530 \text{ kJ mol}^3}{400 \text{ k}} = -1.325 \text{ kJ K}^{-1} \text{ mol}^{-1}$ ∴ ΔS° = 1.325 kJ K ⁻¹ mol ⁻¹ = 1325 J K ⁻¹ mol ⁻¹							
7a	3 rd order or 3	Rate = $k[NO]^2[Cl_2]$: Rate = $k \times [NO]^2 \times [Cl_2]^1$: Overall order = 2+1 = 3							
7b	Reaction 3 as rate is independent of concentration of reactants	Reaction 3 has an overall order of reaction = zero. Changes to the concentration of NH3 makes no difference to reaction rate.							
7c	9.15×10 ⁻⁵ l ² mol ⁻² s ⁻¹	rate = $k \times [NO]^2 [Cl_2]$ $k = \frac{rate}{[NO]^2 [Cl_2]}$ $= \frac{1.43 \times 10^{-6} \text{ mol } l^{-1} \text{ s}^{-1}}{(0.250 \text{ mol } l^{-1})^2 \times 0.250 \text{ mol } l^{-1}}$ $= 9.15 \times 10^{-5} l^2 \text{ mol}^{-2} \text{ s}^{-1}$							

		1							
8a	$2Br^{-} + H_2O_2 + 2H^{+}$ \downarrow $Br_2 + 2H_2O$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
8b	-135.1	2mol of electrons transferred between half reactions :. n=2 $E^{\circ} = 1.77V + (-1.07) = 0.70V$ (see above) $\Delta G^{\circ} = - n \times F \times E^{\circ}$ $= - 2 \times 96500 C \text{ mol}^{-1} \times 0.70V$ $= - 135100 \text{ J mol}^{-1}$ $= - 135.1 \text{ kJ mol}^{-1}$							
9a	Resists pH changes when acid/alkali are added	A buffer is a solution in which the pH remains (approximately) constant when small							
	_	amounts of acid, alkali or water are added.							
9b	One from:	Sodium propanoate or potassium propanoate							
9с	9.30	$gfm NH_4NO_3 = (2x14) + (4x1) + (3x16) = 28 + 4 + 48 = 80g$ $no. of mol = \frac{mass}{gfm} = \frac{1.05g}{80g mol^{-1}} = 0.0131 mol$ $concentration [salt] = \frac{no. of mol}{volume} = \frac{0.001875 mol}{0.1 litres} = 0.131 mol l^{-1}$ $pH = pK_w - pK_b + log \frac{[base]}{[salt]}$ $pH = 14 - 4.76 + log \frac{[0.15]}{[0.131]}$ $pH = 14 - 4.76 + log [1.145]$ $pH = 14 - 4.76 + 0.059$ $pH = 9.30$							
10a	Pharmacophore	Pharmacophores are the part of a molecule with the specific shape necessary to exactly fit the relevant receptor							
10b	S N O CO2H	The pharmacaphore shape must be common to all the different molecules shown. At the point where the molecules different, the pharmacaphore shape ends.							
		Element C H O							
11a	C3H4O2	$\frac{\%}{12} = \frac{50}{12} = \frac{5.6}{1} = \frac{44.4}{16}$ No. of moles (divide % by gfm) = 4.16 = 5.6 = 2.77 Mole ratio (divide through by smallest value) = 1.50 = 2.02 = 1 Double and Round to Whole Number 3 4 2							
11b(i)	C ₆ H ₈ O ₄	The carbons in either ring structure must have 4 bonds.							
11b(i)	2500 - 3500	Any bonds not shown in the diagrams are C-H bonds. Molecule A has a carboxyl COOH group not found in molecule B. Both IR stretches are unique to -COOH group							
12a	Condensation	Reaction C6H5CHO + CH3CHO → C6H5CHCHCHO Benzaldehyde Ethanal Cinnamaldehyde Balanced C7H6O + C2H4O → C9H8O + H2O The reaction is a condensation reaction as two molecules join together and water is removed at the join. <							

